Improvement of Random Forest Classifier through Localization of Persian Handwritten OCR
نویسندگان
چکیده
The random forest (RF) classifier is an ensemble classifier derived from decision tree idea. However the parallel operations of several classifiers along with use of randomness in sample and feature selection has made the random forest a very strong classifier with accuracy rates comparable to most of currently used classifiers. Although, the use of random forest on handwritten digits has been considered before, in this paper RF is applied in recognizing Persian handwritten characters. Trying to improve the recognition rate, we suggest converting the structure of decision trees from a binary tree to a multi branch tree. The improvement gained this way proves the applicability of the idea.
منابع مشابه
Classifier Ensemble Based Class Weightening
Many methods have been proposed for combining multiple classifiers in pattern recognition such as Random Forest which uses decision trees for problem solving. In this paper, we propose a weighted vote-based classifier ensemble method. The proposed method is similar to Random Forest method in employing many decision trees and neural networks as classifiers. For evaluating the proposed weighting ...
متن کاملPersian Handwritten Digit Recognition Using Particle Swarm Probabilistic Neural Network
Handwritten digit recognition can be categorized as a classification problem. Probabilistic Neural Network (PNN) is one of the most effective and useful classifiers, which works based on Bayesian rule. In this paper, in order to recognize Persian (Farsi) handwritten digit recognition, a combination of intelligent clustering method and PNN has been utilized. Hoda database, which includes 80000 P...
متن کاملResearch of Chinese Handwritten Text Segmentation Algorithm
OCR is a complicated process, there are many factors that can influence the recognition rate. Early period people tried to optimize the classifier to obtain high recognition rate, but the premise is that there is only one character no matter print or handwritten. For the performance of classifier has been promoted a lot, recognition rate for single character is high enough for commercial use. W...
متن کاملClassifier Fusion Method to Recognize Handwritten Kannada Numerals
Optical Character Recognition (OCR) is one of the important fields in image processing and pattern recognition domain. Handwritten character recognition has always been a challenging task. Only a little work can be traced towards the recognition of handwritten characters for the south Indian languages. Kannada is one such south Indian language which is also one of the official language of India...
متن کاملRecognition of Handwritten Persian/Arabic Numerals Based on Robust Feature Set and K-NN Classifier
Persian handwritten numerals recognition has been a frontier area of research for the last few decades under pattern recognition. Recognition of handwritten numerals is a difficult task owing to various writing styles of individuals. A robust and efficient method for Persian/Arabic handwritten numerals recognition based on K Nearest Neighbors (K-NN) classifier is presented in this paper. The sy...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2012